Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell
نویسندگان
چکیده
BACKGROUND The microbial fuel cell (MFC) is a green and sustainable technology for electricity energy harvest from biomass, in which exoelectrogens use metabolism and extracellular electron transfer pathways for the conversion of chemical energy into electricity. However, Shewanella oneidensis MR-1, one of the most well-known exoelectrogens, could not use xylose (a key pentose derived from hydrolysis of lignocellulosic biomass) for cell growth and power generation, which limited greatly its practical applications. RESULTS Herein, to enable S. oneidensis to directly utilize xylose as the sole carbon source for bioelectricity production in MFCs, we used synthetic biology strategies to successfully construct four genetically engineered S. oneidensis (namely XE, GE, XS, and GS) by assembling one of the xylose transporters (from Candida intermedia and Clostridium acetobutylicum) with one of intracellular xylose metabolic pathways (the isomerase pathway from Escherichia coli and the oxidoreductase pathway from Scheffersomyces stipites), respectively. We found that among these engineered S. oneidensis strains, the strain GS (i.e. harbouring Gxf1 gene encoding the xylose facilitator from C. intermedi, and XYL1, XYL2, and XKS1 genes encoding the xylose oxidoreductase pathway from S. stipites) was able to generate the highest power density, enabling a maximum electricity power density of 2.1 ± 0.1 mW/m2. CONCLUSION To the best of our knowledge, this was the first report on the rationally designed Shewanella that could use xylose as the sole carbon source and electron donor to produce electricity. The synthetic biology strategies developed in this study could be further extended to rationally engineer other exoelectrogens for lignocellulosic biomass utilization to generate electricity power.
منابع مشابه
Growth with high planktonic biomass in Shewanella oneidensis fuel cells
Shewanella oneidensis MR-1 grew for over 50 days in microbial fuel cells, incompletely oxidizing lactate to acetate with high recovery of the electrons derived from this reaction as electricity. Electricity was produced with lactate or hydrogen and current was comparable to that of electricigens which completely oxidize organic substrates. However, unlike fuel cells with previously described el...
متن کاملAerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production.
We studied the effects of aeration of Shewanella oneidensis on potentiostatic current production, hydrogen production in a microbial electrolysis cell, and electric power generation in a microbial fuel cell (MFC). The potentiostatic performance of aerated S. oneidensis was considerably enhanced to a maximum current density of 0.45 A/m(2) or 80.3 A/m(3) (mean: 0.34 A/m(2), 57.2 A/m(3)) compared ...
متن کاملSimultaneous Analysis of Physiological and Electrical Output Changes in an Operating Microbial Fuel Cell With <i>Shewanella oneidensis</i>
Changes in metabolism and cellular physiology of facultative anaerobes during oxygen exposure can be substantial, but little is known about how these changes connect with electrical current output from an operating microbial fuel cell (MFC). A high-throughput voltage based screening assay (VBSA) was used to correlate current output from a MFC containing Shewanella oneidensis MR-1 to carbon sour...
متن کاملOxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.
Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the prese...
متن کاملSimultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis.
Changes in metabolism and cellular physiology of facultative anaerobes during oxygen exposure can be substantial, but little is known about how these changes connect with electrical current output from an operating microbial fuel cell (MFC). A high-throughput voltage based screening assay (VBSA) was used to correlate current output from a MFC containing Shewanella oneidensis MR-1 to carbon sour...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017